Smart Materials and Nanocomposites for Soft Robotics and Electronics

Soft robotics and electronics take inspiration from living beings, which are constituted by soft tissues able to change their shape and dimensions to adapt to the surrounding environment. Therefore, soft robots and devices are based on polymeric materials able to combine soft mechanical properties and active functionalities, such as mechanical actuation, signal delivering and computing, energy harvesting and storage, sensing, communication.

In the labs of CIMaINa, we put our efforts in the design, synthesis and characterization of smart soft materials and nanocomposites. By exploiting a variety of techniques and facilities, we efficiently combine soft polymers, ionic electrolytes and conductive nanoparticles, in order to obtain hybrid materials able to carry out different smart functionalities, needed by the most advanced soft devices.

Materials and devices  

Smart ionogels and hydrogels
Soft electro-mechanical actuators Supercapacitors
Strain sensors
Stretchable conductors
Piezoelectrics soft materials
Fabrication and characterization techniques

  Spray coating
Solvent casting
UV radical photopolymerization
Supersonic cluster beam deposition
Electro-mechanical characterization
Electrochemical techniques


  • Milani, P., Santaniello, T., Migliorini, L., Andreis, D., & Butera, F. (2023). U.S. Patent Application No. 17/859,371.
  • Saettone, P., Cifell, M., Migliorini, L., Generali, G., Santaniello, T., Monaco, I., … & Franchini, M. C. (2022). U.S. Patent Application No. 17/297,195.


  • Migliorini, L., Villa, S. M., Santaniello, T., & Milani, P. (2022). Nanomaterials and printing techniques for 2D and 3D soft electronics. Nano Futures, 6(3), 032001.
  • Piazzoni, M., Piccoli, E., Migliorini, L., Milana, E., Iberite, F., Vannozzi, L., … & Santaniello, T. (2022). Monolithic three-dimensional functionally graded hydrogels for bioinspired soft robots fabrication. Soft Robotics, 9(2), 224-232.
  • Migliorini, L., Piazzoni, C., Pohako‐Esko, K., Di Girolamo, M., Vitaloni, A., Borghi, F., … & Milani, P. (2021). All‐Printed Green Micro‐Supercapacitors Based on a Natural‐derived Ionic Liquid for Flexible Transient Electronics. Advanced Functional Materials, 31(27), 2102180.
  • Dotan, T., Berg, Y., Migliorini, L., Villa, S. M., Santaniello, T., Milani, P., & Shacham-Diamand, Y. (2021). Soft and flexible gold microelectrodes by supersonic cluster beam deposition and femtosecond laser processing. Microelectronic Engineering, 237, 111478.
  • Migliorini, L., Santaniello, T., Rondinini, S., Saettone, P., Franchini, M. C., Lenardi, C., & Milani, P. (2019). Bioplastic electromechanical actuators based on biodegradable poly (3-hydroxybutyrate) and cluster-assembled gold electrodes. Sensors and Actuators B: Chemical, 286, 230-236.
  • Villa, S. M., Mazzola, V. M., Santaniello, T., Locatelli, E., Maturi, M., Migliorini, L., … & Milani, P. (2019). Soft piezoionic/piezoelectric nanocomposites based on ionogel/BaTiO3 nanoparticles for low frequency and directional discriminative pressure sensing. ACS Macro Letters, 8(4), 414-420.
  • Santaniello, T., Migliorini, L., Yan, Y., Lenardi, C., & Milani, P. (2018). Supersonic cluster beam fabrication of metal–ionogel nanocomposites for soft robotics. Journal of Nanoparticle Research, 20, 1-19.
  • Santaniello, T., Migliorini, L., Locatelli, E., Monaco, I., Yan, Y., Lenardi, C., … & Milani, P. (2017). Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro–mechanical underwater actuation. Smart Materials and Structures, 26(8), 085030.
  • Migliorini, L., Santaniello, T., Yan, Y., Lenardi, C., & Milani, P. (2016). Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics. Sensors and Actuators B: Chemical, 228, 758-766.