SMART and FUNCTIONAL MATERIALS for SOFT ROBOTICS, FLEXIBLE ELECTRONICS and SURGICAL SIMULATION
Soft robotics and electronics take inspiration from living beings, which are constituted by soft tissues able to change their shape and dimensions to adapt to the surrounding environment. Consequently, soft robots and devices are based on polymeric materials able to combine soft mechanical properties and active functionalities, such as mechanical actuation, signal delivering and computing, energy harvesting and storage, sensing, communication.
In the labs of CIMaINa, we put our efforts in the design, synthesis and characterization of smart and functional materials and nanocomposites. By exploiting a variety of techniques and facilities, we efficiently combine soft polymers, ionic electrolytes and conductive nanoparticles, in order to obtain hybrid materials able to display different functionalities, needed by the most advanced soft devices.
Recently, we are also employing our materials for the development of haptic phantoms for the simulation of surgical procedures and practices, which can be of great help to boost the training of young surgeons and to improve patient-specific therapies.
MATERIALS Hydrogels & Ionogels Silicones and elastomers Polymer-metal nanocomposites Metal and carbon NPs Natural-derived and biodegradable materials
|
DEVICES Soft electro-mechanical actuators Supercapacitors Strain sensors Temperature sensors Stretchable conductors Piezoelectric materials |
FABRICATION 3D printing Spray coating Supersonic Cluster Beam Deposition Photo-polymerization Casting Molding |
CHARACTERIZATION Mechanical Electro-mechanical Electro-chemical Electro-thermal Piezoelectric Optical microscopy Electronic microscopy |
Active projects
PRINTMED-3D (https://printmed-3d.com/)
MUSA (https://musascarl.it/en/home-2/)
People
Paolo Milani (Full Professor)
Lorenzo Migliorini (Academic Researcher)
Alessandra Morelli (post-graduate researcher)
Giacomo Valaperta (master student)
Giulio Simonetti (master student)
Francesco Maiocchi (bachelor student)
Ludovico Maria Insalaco (bachelor student)
Patents
· Milani, P., Santaniello, T., Migliorini, L., Andreis, D., & Butera, F. (2023). U.S. Patent Application No. 17/859,371.
· Saettone, P., Cifelli, M., Migliorini, L., Generali, G., Santaniello, T., Monaco, I., … & Franchini, M. C. (2022). U.S. Patent Application No. 17/297,195.
Publications
· Maturi, M., Maturi, S., Sanz de León, A., Migliorini, L., de la Mata, M., Benelli, T., … & Molina, S. I. (2025). Enhanced Properties of 3D-Printed Graphene Oxide Nanocomposites through Itaconic Acid Polyester Grafting. ACS Applied Polymer Materials.
· De Smet, E., Migliorini, L., Milana, E., Milani, P., & Gorissen, B. (2025). Electropneumatic Oscillators Using Nonlinear Inflatables. Advanced Intelligent Systems, 2400695.
· Maturi, M., Migliorini, L., Villa, S. M., Santaniello, T., Fernandez‐Delgado, N., Molina, S. I., … & Franchini, M. C. (2025). 3D‐Printing of Highly Piezoelectric Barium Titanate Polymer Nanocomposites with Surface‐Modified Nanoparticles at Low Loadings. Advanced Functional Materials, 35(1), 2407077.
· Migliorini, L., & Milani, P. (2024, September). Supersonic Cluster Beam Deposition for Soft Robotics and Electronics. In 2024 IEEE International Flexible Electronics Technology Conference (IFETC) (pp. 1-3). IEEE.
· Migliorini, L., Valaperta, G., Acocella, F., Santaniello, T., Castelli, N., Perin, A., … & Milani, P. (2024). Conductive Gel Phantoms for Training in Electrosurgery. Advanced Materials Interfaces, 11(26), 2400246.
· Migliorini, L., Santaniello, T., & Milani, P. (2024). Printing Electrically Conductive Patterns on Polymeric and 3D-Printed Systems. In Resilient Hybrid Electronics for Extreme/Harsh Environments (pp. 93-113). CRC Press.
· Migliorini, L., Santaniello, T., Falqui, A., & Milani, P. (2023). Super-stretchable resistive strain sensor based on Ecoflex–gold nanocomposites. ACS Applied Nano Materials, 6(10), 8999-9007.
· Migliorini, L., Villa, S. M., Santaniello, T., & Milani, P. (2022). Nanomaterials and printing techniques for 2D and 3D soft electronics. Nano Futures, 6(3), 032001.
· Piazzoni, M., Piccoli, E., Migliorini, L., Milana, E., Iberite, F., Vannozzi, L., … & Santaniello, T. (2022). Monolithic three-dimensional functionally graded hydrogels for bioinspired soft robots fabrication. Soft Robotics, 9(2), 224-232.
· Migliorini, L., Piazzoni, C., Pohako‐Esko, K., Di Girolamo, M., Vitaloni, A., Borghi, F., … & Milani, P. (2021). All‐Printed Green Micro‐Supercapacitors Based on a Natural‐derived Ionic Liquid for Flexible Transient Electronics. Advanced Functional Materials, 31(27), 2102180.
· Dotan, T., Berg, Y., Migliorini, L., Villa, S. M., Santaniello, T., Milani, P., & Shacham-Diamand, Y. (2021). Soft and flexible gold microelectrodes by supersonic cluster beam deposition and femtosecond laser processing. Microelectronic Engineering, 237, 111478.
· Migliorini, L., Santaniello, T., Rondinini, S., Saettone, P., Franchini, M. C., Lenardi, C., & Milani, P. (2019). Bioplastic electromechanical actuators based on biodegradable poly (3-hydroxybutyrate) and cluster-assembled gold electrodes. Sensors and Actuators B: Chemical, 286, 230-236.
· Villa, S. M., Mazzola, V. M., Santaniello, T., Locatelli, E., Maturi, M., Migliorini, L., … & Milani, P. (2019). Soft piezoionic/piezoelectric nanocomposites based on ionogel/BaTiO3 nanoparticles for low frequency and directional discriminative pressure sensing. ACS Macro Letters, 8(4), 414-420.
· Santaniello, T., Migliorini, L., Yan, Y., Lenardi, C., & Milani, P. (2018). Supersonic cluster beam fabrication of metal–ionogel nanocomposites for soft robotics. Journal of Nanoparticle Research, 20, 1-19.
· Santaniello, T., Migliorini, L., Locatelli, E., Monaco, I., Yan, Y., Lenardi, C., … & Milani, P. (2017). Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro–mechanical underwater actuation. Smart Materials and
Structures, 26(8), 085030.
· Migliorini, L., Santaniello, T., Yan, Y., Lenardi, C., & Milani, P. (2016). Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics. Sensors and Actuators B: Chemical, 228, 758-766.